6,234 research outputs found

    Systematic study of deformed nuclei at the drip lines and beyond

    Full text link
    An improved prescription for choosing a transformed harmonic oscillator (THO) basis for use in configuration-space Hartree-Fock-Bogoliubov (HFB) calculations is presented. The new HFB+THO framework that follows accurately reproduces the results of coordinate-space HFB calculations for spherical nuclei, including those that are weakly bound. Furthermore, it is fully automated, facilitating its use in systematic investigations of large sets of nuclei throughout the periodic table. As a first application, we have carried out calculations using the Skyrme Force SLy4 and volume pairing, with exact particle number projection following application of the Lipkin-Nogami prescription. Calculations were performed for all even-even nuclei from the proton drip line to the neutron drip line having proton numbers Z=2,4,...,108 and neutron numbers N=2,4,...,188. We focus on nuclei near the neutron drip line and find that there exist numerous particle-bound even-even nuclei (i.e., nuclei with negative Fermi energies) that have at the same time negative two-neutron separation energies. This phenomenon, which was earlier noted for light nuclei, is attributed to bound shape isomers beyond the drip line.Comment: 12 ReVTeX4 pages, 6 EPS figures. See also http://www.fuw.edu.pl/~dobaczew/thodri/thodri.htm

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure

    Lifetime measurement of excited low-spin states via the (p,p′γ(p,p^{\prime}\gamma) reaction

    Full text link
    In this article a method for lifetime measurements in the sub-picosecond regime via the Doppler-shift attenuation method (DSAM) following the inelastic proton scattering reaction is presented. In a pioneering experiment we extracted the lifetimes of 30 excited low-spin states of 96^{96}Ru, taking advantage of the coincident detection of scattered protons and de-exciting γ\gamma-rays as well as the large number of particle and γ\gamma-ray detectors provided by the SONIC@HORUS setup at the University of Cologne. The large amount of new experimental data shows that this technique is suited for the measurement of lifetimes of excited low-spin states, especially for isotopes with a low isotopic abundance, where (n,n′γ(n,n^{\prime}\gamma) or - in case of investigating dipole excitations - (γ,γ′\gamma,\gamma^{\prime}) experiments are not feasible due to the lack of sufficient isotopically enriched target material

    Transition rates and nuclear structure changes in mirror nuclei 47Cr and 47V

    Full text link
    Lifetime measurements in the mirror nuclei 47Cr and 47V were performed by means of the Doppler-shift attenuation method using the multidetector array EUROBALL, in conjunction with the ancillary detectors ISIS and the Neutron Wall. The determined transition strengths in the yrast cascades are well described by full pf shell model calculations.Comment: Latex2e, 11 pages, 3 figure

    Aerogel-Positronium Technology for the Detection of Small Quantities of Organic and/or Toxic Materials

    Get PDF
    The Ps-aerogel system [Ps is positronium (an electron-positron-hydrogen-like atom)] has been evaluated and optimized as a potential tool for planetary exploration missions. Different configurations of use were assessed, and the results provide a quantitative measure of the expected performance. The aerogel density is first optimized to attain maximum production of Ps that reaches the pores of the aerogel. This has been accomplished, and the optimum aerogel density is .70 mg/cm3. The aerogel is used as a concentrator for target volatile moieties, which accumulate in its open porosity over an extended period of time. For the detection of the accumulated materials, the use of Ps as a probe for the environment at the pore surface, has been proposed. This concept is based on two steps: (1) using aerogel to produce Ps and (2) using the propensity of Ps to interact differently with organic and inorganic matter. The active area of such a detector will comprise aerogel with a certain density, specific surface area, and gas permeability optimized for Ps production and gas diffusion and adsorption. The aerogel is a natural adsorber of organic molecules, which adhere to its internal surface, where their presence is detected by the Ps probe. Initial estimates indicate that, e.g., trace organic molecules in the Martian atmosphere, can be detected at the ppm level, which rivals current methods having significantly higher complexity, volume, mass, and power consumption (e.g. Raman, IR)

    Average ground-state energy of finite Fermi systems

    Get PDF
    Semiclassical theories like the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.Comment: 10 pages, 8 figure

    Sum Rule Approach to the Isoscalar Giant Monopole Resonance in Drip Line Nuclei

    Get PDF
    Using the density-dependent Hartree-Fock approximation and Skyrme forces together with the scaling method and constrained Hartree-Fock calculations, we obtain the average energies of the isoscalar giant monopole resonance. The calculations are done along several isotopic chains from the proton to the neutron drip lines. It is found that while approaching the neutron drip line, the scaled and the constrained energies decrease and the resonance width increases. Similar but smaller effects arise near the proton drip line, although only for the lighter isotopic chains. A qualitatively good agreement is found between our sum rule description and the presently existing random phase approximation results. The ability of the semiclassical approximations of the Thomas-Fermi type, which properly describe the average energy of the isoscalar giant monopole resonance for stable nuclei, to predict average properties for nuclei near the drip lines is also analyzed. We show that when hbar corrections are included, the semiclassical estimates reproduce, on average, the quantal excitation energies of the giant monopole resonance for nuclei with extreme isospin values.Comment: 31 pages, 12 figures, revtex4; some changes in text and figure
    • …
    corecore